

Presentation by Peter Rae

9 July 2024

Incorporating a Run-of-River HEP in an Integrated Power System

Presentation

Outline

Power System Overview

Generation Expansion Planning

Hydropower Operation

Operation with Other Renewable Energy

Power System Overview

Global Primary Energy Demand

H. Ritchie, "How have the world's energy sources changed over the last two centuries", Our World 5 in Data, P-0588

Global Electrical Energy Demand

Pinto et al. (2022), 'World electricity generation since 1900', Boston University Institute for Global Sustainability, **P-0589**

Historical Electricity Generation in India

Data Source: "Growth of Electricity Sector in India from 1947 – 2020", Central Electrical Authority, Government of India, P-0590

Historic Installed Capacity in India

Data Source: "Overview of renewable power generation", Central Electrical Authority, Government of India, **P-0591**

India Power Generation

"Power Sector at a Glance, All India", Central Electrical Authority, Government of India, **P-0593**

"Status of Pumped Storage Development in India", Central Electrical Authority, Government of India, **P-0592**

- □ World's 3rd largest power system
- Rapid growth of solar and wind capacity

Significant plans for new pumped storage development (57 GW listed by CEA as of 2023)

System Interconnection

Gride Five interconnected Regional Power Grids

Indus River basin in Northern Region

Installed Capacity by Region (MW)

"Growth of Electricity Sector in India from 1947 – 2020", Central Electrical Authority, Government of India, **P-0590**

Generation Expansion Planning

Generation Expansion Planning

"Expansion Planning for Electrical Generating Systems, A Guidebook", Technical Reports Series No 241, 1984, Figure 2.1, **P-0601**

Firm Power and Firm Energy

Grand Firm Energy: Energy with assured availability. Key Issues:

- ➢ 95 to 98% reliability.
- Determined by Hydrology

□ Firm Power: Power with assured availability.

Power is the rate of energy transfer

Determined by plant characteristics

System Requirement

- Demand = Systemwide Firm Power
- Surplus Firm Power for reserve capacity

- Duration of Firm Power is limited by the available energy
- Pondage is computed for the duration of operation
- Energy determined by

hydrology

Indus Waters Treaty has a specific definition of Firm Power

System Benefits

- Gamma Key Requirements
- Constant Voltage
- Constant Frequency
- > System Inertia
- Load following capacity
- Black start capability

eneration Resources

Ó

- Reserves
- Spinning Reserve capacity
- Standby Reserve capacity
- Maintenance capacity

 = Exhibits Attribute = Partially Exhibits Attribute = Does Not Exhibit Attribute Resource Type 	Essential Reliability Services (Frequency, Voltage, Ramp Capability)					Fuel Assurance			Flexibility		Other		
	Frequency Response (Inertia & Primary)	Voltage Control	lation	Ramp everse louse	Following	fuel Limited 2 hours at Eco. Max Output)	te Fuel Inventory		t Min. Run Time Ins.)/ Mutiple Starts Par Day	up/ Notification Time < 30 Minutes	k Start Capeble	nvironmental Restrictions (Would Limit Run Hours)	A STATE OF A
			Regi	Cont	load	Not 1	On-s	Cycle	Shor (< 2	Start	Blac	No E	
Hydro						0	0			\circ		0	
Natural Gas - Combustion Turbine		۲	\bigcirc		0		0			۲		۲	¢
Oil -Steam		۲	۲	۲		۲		۲	0	0	0	0	ę
Coal - Steam				0	0		0	0	0	0	0	0	Č
Natural Gas - Steam		0			۲	۲	0	۲	0	0	0	0	Ç
Oil/ Diesel - Combustion Turbine		۲	0		0	0		۲	۲	۲	۲	0	Č
Nuclear	0		0	0	0	0		0	0	0	0	0	(
Battery/ Storage	0	0	۲	۲	0	0	0	۲			0	۲	
Demand Response	0	0	0	0	0	0	0	۲		0	0		(
Solar	0	0	0	0	0	0	0	۲		۲	0	۲	(
Wind	0	0	0	0	0	0	0				0	0	(

Ancillary Benefits

Hydropower Operation

HEP Operation

Turbine - hydraulic to mechanical energy

Generator - mechanical to electrical energy

Turbine-Generator constant unit speed

determines Frequency

Plant outputs

> Power (MW) varying with flowrate and head

Energy (GWh)

Ancillary Services

17

Turbine Governor

D Turbine Governor

- Adjust flow to maintain speed and frequency
- > Share load changes with other units
- > Adjusts unit output & protects plant
- Operating Modes
- Speed Control
- Power Control
- Gate position/flow control
- Water level control

ASME, "The Guide to Hydropower Mechanical Design", Prepared by the ASME Hydro Power Technical Committee, HCI Publications, 1996, (Extract, Figure 3-19 and Figure 4-1), **P-0604**

18

ROR HEP Operation

Daily schedule based on flow available

□ Normally operates at part load

- Creates "spinning" reserve
- Maximizes efficiency

Governor varies turbine flow to follow frequency and control water level with fluctuating inflow

- Pondage stores "energy"
- Varies with inflow and power
- Limited daily peaking

Francis Turbine Efficiency

Power System Operation

- Varies seasonally, daily and regionally
- Daily availability declaration
- Aost plants follow load
- Frequency and Voltage maintained by generators
- Dispatch Operator defines daily peaking or ancillary service (spinning reserve, frequency control, etc.)

Typical Daily Demand

Power System Operation Corporation Ltd, "Electricity Demand Pattern Analysis", POSOCO 2016. (Extract, Figures 1, 7 and Section 16.3.3), **P-0605**

Daily Demand by Season

Power System Operation Corporation Ltd, "Electricity Demand Pattern Analysis", POSOCO 2016. (Extract, Figures 1, 7 and Section 16.3.3), P-0605

Average Load Duration Curve by Year

Daily load variation about ± 20 of Average Load

Power System Operation Corporation Ltd, "Electricity Demand Pattern Analysis", POSOCO 2016. (Extract, Figures 1, 7 and Section 16.3.3), **P-0605**

Operation with Other Renewable Energy Sources

Other Renewable Generation

- Predominantly Wind and Solar sources
- $\hfill\square$ Energy generated when available
- □ Not available on-demand
- □ Energy is used immediately
- Energy Storage
- Conventional pre-transformation
- Renewable storage after transformation (e.g., batteries, Pumped Storage Hydro, compressed air, etc.)

Global Solar Atlas Available at: https://globalsolaratlas.info/map?c=11.609193,8.4375,3, P-0606

World Renewable Energy Generation Costs

□ LCOE 2022
 > Wind \$0.033/kWh,
 > Solar \$0.049/kWh
 > Hydro \$0.061/kWh

International Renewable Energy Agency, "Renewable Power Generation Costs in 2022", IRENA 2023, P-0611

World Thermal Energy Generation Costs

LCOE 2022

- Fossil Fuel Plant
 - 0.058/kWh and up
- Solar & Wind produce
 - energy at lower cost

Solar Generation

Generation with Wind and Solar

California Independent System Operator, Grid Status.IO, P-0607

Hydro – Solar Hybridization

□ Key contributions

- Regulation of solar ramping
- Spinning & standby reserve
- Inertia, Reactive Power, etc.
- Peak period energy storage
- Energy storage solar energy become dispatchable

Ancillary services - system quality

Limitations

- Energy transfer limited hydrology
- ROR low flow periods small energy storage capacity
- ROR high flow period has no energy storage capacity
- Ancillary benefits conflicts with energy transfers
- Large solar and wind expansion requires dedicated energy storage

Energy Storage - Pondage

Pondage:

- Reservoir storage of limited magnitude that provides only daily or weekly regulation of streamflow (USACE, EM1110-2-1701)
- Function of (i) inflow and (ii) peak period flow rate
- Pondage can only provide energy storage up to limit of available natural inflow

Pakistan's Memorial, Appendix E2, Figure 1

Summary Observations - 1

Cost trends

> Increasing solar and wind generation

Selective Hydro applications

Reducing thermal generation

Evolution of power systems to solar and wind with dedicated energy storage (i.e., batteries & pumped storage)

Summary Observations - 2

- Power system load curves
- Vary seasonally and yearly
- important for power system planning
- Not applicable to individual plant
- Pondage
- Computed from available energy and Firm Power
- > Daily dispatch for peaking limited to daily flow available
- Provision of system ancillary benefits

