

PRESENTATION 6: RoR HEP basics (II)

Dr Yasir Abbas Mr Umar Farooq

26 April 2024

Overview of sediment issues

Sediment size

- Sediment size is measured in accordance with the **Wentworth scale**.
- The largest sediments in the Himalaya (boulders) are 10 million times larger than the smallest sediments (clays).

Sediment

transport

- Two basic modes of sediment transport in rivers: **suspended load** and **bed load**.
- The great majority of fluvial sediment is sand or finer material transported in **suspension** (suspended load).

Himalayan riverbeds

Indus River above Tarbela reservoir at low flow (November)

Kali Gandaki River, Nepal, at low flow (January)

Himalayan sand

- Predominately **quar tz**, which is harder than steel. Typically transported as **suspended load**.
- Freshly eroded from parent rock, making it angular and **highly abrasive** to HEP turbines.

Seasonal

variability

- Himalayan flows are highly seasonal.
- Nearly all sediment is eroded and transported downstream during the summer wet season.

- **Sediments** deposit in different zones according to grain size.
- **Delta deposits**: coarser sediments settle rapidly to form a delta that advances downstream.
- **Bottom-set deposits:** fine sediments settle more slowly and are primarily deposited downstream of the delta.
- **Long-term sediment balance** is achieved when multi-year sediment inflow and outflow are matched.

Reservoir deltas

Sandy delta deposits advancing downstream in Porce II HEP reservoir, Colombia.

Top of the sand-silt delta advancing toward Tarbela HEP dam, Pakistan.

Sediment management: live storage

Capacity loss from sedimentation

DELTA PROGRESSION LOSS OF USEABLE STORAGE

placement

Outlet

- Water level at the dam is a key factor controlling the sediment profile along the length of a reservoir.
- Changing outlet depth will not change the profile if the water level at the dam remains constant.
- A low level outlet will create a localized scour cone at the upstream side of the outlet.

Sediment

management

strategies

Selection of sediment

management strategy

- Multiple factors are involved in the selection of the combination of sediment management strategies appropriate for a given site.
- **15** • There is no 'one size fits all' solution - everything is case-bycase.

Erosion control: reduce sediment input

Flood sluicing

- Pass sediment-laden floods through the reservoir at the highest possible velocity to minimize sediment trapping.
- Sediments are routed through the reservoir and exit downstream through the high-capacity gates that are opened to pass the flood.

- sluicing
- Reservoir level is lowered to the **minimum drawdown level** (MDDL) during monsoon, keeping the pondage pool empty to avoid sedimentation.
- Absence of water in the operating pool prevents **sediment accumulation**.

Sediment bypass strategies

Bypass tunnel for sediment routing

Bypass tunnel configuration

Off-stream reservoir for sediment routing

- Reservoir is placed outside the main river and is fed by an intake.
- Water with low sediment concentration is passed into the reservoir.
- Sediment-laden floods run downstream along the river channel.

23 23

Pressure Flushing

ure flushing

- When a low-level outlet is opened, but the reservoir remains at a high level, a **scour cone** will develop in the immediate vicinity of the outlet.
- The process is termed **pressure flushing** because it does not involve reservoir drawdown.

Pressure flushing

25

25

in progress

- Empty flushing involves **emptying the reservoir** and allowing the river to scour the sediment deposits through low-level outlets in the dam.
- Flushing often has **s ignificant downstream environmental impact** due to extremely high sediment concentrations.
- Flushing is rarely the only available form of sediment management (cf. sluicing). Downstream impacts can be minimized through **mindful design and operation of the HEP**.

Empty flushing in progress

27

Mechanical removal

- Actual physical removal of accumulated sediment in reservoir.
- Can be achieved through **dredging**, in which the sediment is removed from underwater and the HEP remains active, or by **dry excavation**, in which the HEP does not continue generating.
- If done diligently, can be very effective (e.g. Bajo Anchicayâ, Colombia).

Sediment management: intakes and turbines

Turbine

abrasion

- Coarse sediment, if allowed into the headrace, may erode the turbines, diminishing power generation efficiency.
- Each Francis turbine runner costs around USD 3.5 million and can take several weeks to replace.

Intake design

- Poor intake design is a significant factor influencing sediment ingress into the turbines.
- Sediment management begins at the design stage.

Intake placement

- Sedimentation issues can be minimized by optimizing intake geometry.
- A higher intake will have fewer sediment problems as gravity causes coarser (more abrasive) sediments to sink to deeper depths.

Turbine coating

- One sediment management strategy is applying a Tungsten carbide coating to the turbine runner.
- Sacrificial coatings can protect the softer underlying stainless metals of the runners and wicket gates from abrasive erosion by small particles for about 4 years.
- Runner can be sent back to the factory for re-coating at a cost of around USD 0.5 million.

- A **desander is** a sedimentation basin downstream of the intake which traps larger and rapidly-settling sediment particles, which are highly abrasive, before they reach the turbines.
- Desanders can be constructed on the surface (as at NJHEP) or as large underground tanks.

NJHEP desander

99.99 99.99 99.99 99.99 99.98 99.92 99.45 96.68 89.11 0.4 0.3 0.25 0.2 0.18 0.16 0.14 0.12 0.1 Grain size (mm) versus sediment trapped (%) Sediment trapped (%)

Desander

efficiency • Based on SSIM model study results.

• Traps 89.1% of sand up to 0.1mm (width of human hair) in diameter and between 99.9 and 96.7% of all coarser grains.

